

PARINERS IN PROGRESS

2008
 PLANNED SCHEDULE COMPRESSION

FACE CMALLSNGES
GREATE SOLUTONS

iii
a) vome

Biography

Awad S. Hanna, Ph.D., P.E

Awad S. Hanna is a professor and chair of the construction engineering and management program at the University of Wisconsin-Madison, department of Civil and Environmental Engineering. Dr. Hama holds M. S. and Ph.D. degrees from Penn State University and he is a register professional engineer in the U S and Canada. Awad has been an active construction practitioner, educator and researcher for over 30 years. He has taught construction management courses at Penn State University, Memorial University, Canada, and University of Wisconsin-Madison. Dr: Hanna has conducted several research projects for the New Horizon Foundation and the Electrical Contracting Foundation including landmark studies on the cumulative impact of change orders on electrical/mechanical labor productivity, schedule compression and acceleration, impact of stacking of trades on labor productivity, performance evaluation for electrical supervisors, and craftsmen, and productivity factors in electrical construction. Dr. Hama has conducted research for other national organizations including the National Highway Research Program, and the Mechanical Contracting Foundation, and the Construction Industry Institute. Dr. Hanna has taught more than 300 successful seminars and workshops in more than 35 states on topics such as change orders impacts, project scheduling, estimating, labor productivity, construction delay claims.

Dr. Hamma is also a national consultant representing and assisting many contractors and owners in productivity losses related to change orders, acceleration and compression, delay, and trade stacking.

Face Challenges

* Declining Productivity and Profit
* Increased demand on accelerated schedule

Productivity Gap

Profitability is Declining in Construction

Schedule Compression

"A reduction from the normal experienced time or optimal time typical for the type and size of project being planned within a given set of circumstance" (CII 1990)

Schedule Compression \& Acceleration

-- Originally Planned Work Hours
Compressed Work Hours
\rightarrow Compressed Work Hours With Inefficiencies

Manpower Loading Sheet Metal Work

Types of Schedule Compression \& Acceleration

1. Mandated Acceleration * Owner's request
2. Constructive Acceleration

* Late Start
* Delay
* Change Scope

Why Schedule Compression is a Problem

Overtime Impact (Hanna, 2006)

1. Effect of Overtime

Effect of overtime on Productivity 50- and 60-Hour

 Work-Weeks

Figure is based on information from Scheduled Overtime Effect on Construction Projects, The Business Roundtable(1980)

1. Effect of Overtime (Cont.) Scheduled Overtime:

Scheduled Overtime Productivity Decreases in Terms of Hours per Week for 50 and 60-Hour Weeks (The Business Roundtable 1980)

गुi.

NEMI

Overmanning Impact (Hanna, 2006)

Applicable Range

- Peak/Avg. Ratio
:1.7~3.8
- Actual Peak
: $4 \sim 50$
- Project Size $700 ~ 208,000$ Manhrs

गु15

Shift Work Impact (Hanna, 2006)

Applicable Range

- \% Shift Work : 2\% 2 -53\%
- Project Size
: 3,000-550,000 Manhrs

可

Concepts included in the Planned Schedule Compression Concept File

Project Category	
Organization	Provide Employees with Incentives
	Staff the Project with the Most Efficient Crews
	Avoid Interrupting Crews During Peak Productivity Times
	Provide Proactive Schedule Management during Compression Periods
	Participative Management
	Detailed Project Planning
	Reduction of Task Scope to Milestone Activities
	Increase the Supervisor to Worker Ratio
	Use CPM Scheduling Techniques for Project Control
	Include Anticipated Weather Delays in Work Schedule
	Employ a Just-in-Time Material Delivery Plan
	Establish a Special Material Handling Crew for the Project
	Establish a Special Material Cleanup Crew for the Project
	Assign a Material Coordinator to the Project
	Establish a Clear Zone in the Material Lay-Down Area
Equipment and Tools	Improve Vendor Performance by Establishing a Vendor Management System
	Develop a Project Tool Management Program
Information	Increase the Inventory of Spare Parts, Tools, Etc.
Labor	Complete a Constructability Analysis of the Plans Prior to Construction
	Add Additional Staff to the Project
	Add a Second Shift
	Change to Special Shifts
	Use a Set-up Crew
Support Services	Schedule Tasks in Repetition
Construction Methods	Create More Detailed Subcontractor Schedules
	Look for Short Cuts in the Process
	Plan for and Use Modular and Preassembled Components
	Brief the Crew Prior to Work Operations

